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We investigate a general class of electromagnetic devices created with any continuous transformation func-
tions by rigorously calculating the analytical expressions of the electromagnetic field in the whole space. Some
interesting phenomena associated with these transformation devices, including the invisibility cloaks, concen-
trators, and field rotators, are discussed. By carefully choosing the transformation function, we can realize
cloaks, which are insensitive to perturbations at both the inner and outer boundaries. Furthermore, we find that
when the coating layer of the concentrator is realized with left-handed materials, energy will circulate between
the coating and the core, and the energy transmitted through the core of the concentrator can be much bigger
than that transmitted through the concentrator. Therefore, such concentrator is also a power flux enhancer.
Finally, we propose a spherical field rotator, which functions as not only a wave vector rotator but also a
polarization rotator, depending on the orientations of the spherical rotator with respect to the incident wave
direction. The functionality of these transformation devices are all successfully confirmed by our analytical
full-wave method, which also provides an alternate computational efficient validation method in contrast to
numerical validation methods.
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I. INTRODUCTION

Recently, cloaks of invisibility have received much
attention.1–17 Pendry et al. proposed a coordinate transforma-
tion approach to provide a method to control electromagnetic
�EM� fields, by which a space consisting of the normal free
space can be squeezed into a new space with different vol-
umes and space-distributed constitutive parameters.1 Follow-
ing this approach, a microwave invisibility cloak was soon
proposed and experimentally realized,2 and some other de-
vices such as the EM concentrators,3,4 rotators,5 and
hyperlens6,7 were also investigated by similar methods. Apart
from the pure transformation method, full-wave simulations8

and traditional EM analysis based on Mie scattering9 were
also presented and both verified the validation of the trans-
formation approach. These rapid progresses make the coor-
dinate transformation approach a hot topic in the electromag-
netics community and imply very important future
applications.10,11 The current discussions on the invisibility
cloak are mostly based on a linear transformation presented
by Pendry et al.1 Some authors have considered invisibility
cloak with high order transformations.12,13 In this paper, we
try to present a generalized formulation on how to do the
transformations to obtain different devices by combining the
merits of both coordinate transformation and the Mie scatter-
ing solutions. Starting from such a formulation, aforemen-
tioned devices �invisibility cloaks, concentrators, and field
rotators� can be easily obtained by simply choosing different
scalar transformation functions �including the transformation
on � and ��, and the internal field distributions in these de-
vices can also be controlled by tuning the shapes of the func-
tions. With a different approach to Pendry’s work, we also
confirm that such scalar transformation functions can be any
continuous functions and can be applied to any coordinate to
realize electromagnetic devices with functionality. This ana-

lytical full-wave method provides not only a global physical
understanding to the effect of the coordinate transformation
but also a convenient analysis and design tool for such de-
vices due to its very high computational efficiency.

II. FORMULATIONS

Consider the three-dimensional case �the following idea is
also applicable to a two dimensional cylindrical case�: a gen-
eral coordinate transformation between two spherical coordi-
nate systems �r� ,�� ,��� and �r ,� ,�� is described by

r� = f�r,�,��, �� = g�r,�,��, �� = h�r,�,�� , �1�

where r�, ��, and �� represent the coordinates in the original
coordinate system and f�·�, g�·�, and h�·� can be arbitrary
monotonic differentiable functions. Following the transfor-
mation approach proposed in Ref. 1, Maxwell equations still
retain its form invariance in the new space �r ,� ,�� but the
permittivity and permeability will turn into distributed or
space dependent tensors,

�� = �0T� −1, �� = �0T� −1, �2�

where �0 and �0 represent the scalar permittivity and perme-
ability of free space in the original space before transforma-

tion. The matrix T is defined by T=J�TJ� /det�J��, where J�

=��f ,g ,h� /��r ,� ,�� is the Jacobian matrix. According to the
Mie scattering theory, for source free cases, we can decom-
pose the fields into TE and TM modes by introducing the

vector potential ĀTE and ĀTM in the new space and express
the fields as

BTM = � � �ĀTM� ,
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DTM =
i

�
�� � ��� −1 · � � �ĀTM��� ,

DTE = − � � �ĀTE� ,

BTE =
i

�
�� � ���−1 · � � �ĀTE��� , �3�

where B and D represent the magnetic flux density and elec-
tric displacement, respectively. Since the media described by

�� and �� is no longer isotropic, the directions of ĀTE and ĀTM
will not always be along the r direction. For mathematical
convenience, we let

ĀTM = � �f

�r
r̂ +

�f

r��
�̂ +

�f

r sin ���
�̂��TM,

ĀTE = � �f

�r
r̂ +

�f

r��
�̂ +

�f

r sin ���
�̂��TE, �4�

where �TM and �TE are scalar potentials for TE and TM
cases, respectively. Note that if f�·� is only a function of r,
for example, a linear function like f�r�= �R2 / �R2−R1���r
−R1�, then the two vector potentials ĀTE and ĀTM will be
along the r direction, and it will be reduced to the case stud-
ied in Ref. 9 Substituting Eq. �4� into Eq. �3�, we obtain the
partial differential equation for �TE and �TM,

	 �2

�f2 +
1

f2 sin g

�

�g
�sin g

�

�g
� +

1

f2 sin2 g

�2

�h2 + k0
2
� = 0,

�5�

which takes the same form as the Helmholtz equation, so one
of its special solution is

� = B̂n�k0f�Pn
m�cos g��Am cos mh + Bm sin mh� , �6�

where B̂n��� is the Riccati–Bessel function, Pn
m is the nth

orders of the associated Legendre polynomials of degree m,
and Am and Bm are undetermined coefficients. Using Eq. �4�,
we can obtain the vector potentials ĀTE and ĀTM as follows:

ĀTM = �
m,n

am,n
TM� �f

�r
r̂ +

�f

r��
�̂ +

�f

r sin ���
�̂�B̂n�k0f�Pn

m�cos g�

��Am cos mh + Bm sin mh� ,

ĀTE = �
m,n

am,n
TE � �f

�r
r̂ +

�f

r��
�̂ +

�f

r sin ���
�̂�B̂n�k0f�Pn

m�cos g�

��Am cos mh + Bm sin mh� , �7�

where the coefficients am,n
TM and am,n

TE can be determined by
applying corresponding boundary conditions. Thus, all the
components of the total fields can be obtained by substituting
Eq. �7� into Eq. �3� and take the following forms:

Er =
i

��0�0
	 �f

�r
� �2

�f2 + k0
2� +

�g

�r

�2

�f�g
+

�h

�r

�2

�f�h

�TM

+
1

�0
�sin g

�h

�r

�

�g
−

1

sin g

�g

�r

�

�h
��TE, �8a�

E� =
i

��0�0r
	 �f

��
� �2

�f2 + k0
2� +

�g

��

�2

�f�g
+

�h

��

�2

�f�h

�TM

+
1

�0r
�sin g

�h

��

�

�g
−

1

sin g

�g

��

�

�h
��TE, �8b�

E� =
i

��0�0r sin �
	 �f

��
� �2

�f2 + k0
2� +

�g

��

�2

�f�g

+
�h

��
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�
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�g

��

�
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��TE, �8c�
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1

�0
� 1
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�g
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�

�h
− sin g

�h
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where E and H represent the electric and magnetic fields,
respectively.

It should be pointed out that in the cases that the functions
are nonmonotonic or nondifferentiable at some points, we
can decompose the definition domain into several monotonic
and differentiable domains, in which the above method can
be applied. The boundary points of the separate domains can
be treated with boundary conditions.

III. SPHERICAL CLOAKS

To begin with, the above formulas are applied to the
spherical cloaks. Any continuous functions, f�·�, g�·�, and
h�·�, that satisfy f�R2 ,� ,��=R2, g�R2 ,� ,��=�, h�R2 ,� ,��
=�+�0 �where �0 is a definite constant�, and f�R1 ,� ,��=0
�these conditions can be directly obtained from the partial
differential equations by setting the scattering coefficients
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Tn
TM and Tn

TE to zero at the outer boundary� can be used to
achieve a coating inside the field which is always matched
with the outer free space at the outer boundary R2, and the
potential is uniform everywhere at the inner boundary R1.
The coating with this quality can realize a perfect spherical
invisibility cloak. Detailed illustration of it is out of the
scope of this paper and further discussion, with the general
theoretical analysis and numerical simulations, will be given
in our other paper. Here, we only consider one simple case
when r�= f�r�, ��=�, and ��=�. The associated permittivity
and permeability tensors are then given by

�� = �r�r�r̂r̂ + �t�r��̂�̂ + �t�r��̂�̂ ,

�� = �r�r�r̂r̂ + �t�r��̂�̂ + �t�r��̂�̂ ,

where

�t = �0f��r�, �r = �0
f2�r�

r2f��r�
,

�t = �0f��r�, �r = �0
f2�r�

r2f��r�
. �9�

For an arbitrary differentiable transformation function f�r�,
we will show in detail that these parameters yield a perfect
invisibility as long as f�R2�=R2 and f�R1�=0 are satisfied.

Suppose that an Ex polarized plane wave with a unit am-
plitude Ei= x̂eik0z is incident upon the coated sphere along the
z direction. With the solution of Eq. �4�, the vector potentials
for the incident fields �r	R2�, the scattered fields �r	R2�,
and the fields inside the cloak layer �R1
r
R2� can be
written in the following forms, respectively:

ĀTM
i = r̂

cos �

�
�

n

an�n�k0r�Pn
1�cos �� ,

ĀTE
i = r̂

sin �

��0
�

n
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1�cos �� , �10a�

ĀTM
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cos �

�
�

n

anTn
TM
n�k0r�Pn

1�cos �� ,

ĀTE
s = r̂

sin �

��0
�

n

anTn
TE
n�k0r�Pn

1�cos �� , �10b�

ĀTM
c = r̂

cos �

�
�

n

f��r��dn
TM�n�k0f�r��

+ fn
TM�n�k0f�r���Pn

1�cos �� ,

ĀTE
c = r̂

sin �

��0
�

n

f��r��dn
TE�n�k0f�r��

+ fn
TE�n�k0f�r���Pn

1�cos �� , �10c�

where an= �−i�−n�2n+1� /n�n+1�, n=1,2 ,3 , . . ., and �0
=��0 /�0. Tn

TM, Tn
TE, dn

TM, dn
TE, fn

TM, and fn
TE are unknown

expansion coefficients; �n���, �n���, and 
n��� represent the
Riccati–Bessel function of the first, the second, and the third
kind, respectively.18 Since f�R1�=0, �n�0� is infinite; the fini-
tude of the field at the inner boundary R1 requires that fn

TM

= fn
TE=0.9 By applying the boundary conditions at the bound-

ary of r=R2, we can get other unknown coefficients,

Tn
TM = Tn

TE = −
�n��k0R2��n�k0f�R2�� − �n�k0R2��n��k0f�R2��

n��k0R2��n�k0f�R2�� − 
n�k0R2��n��k0f�R2��

,

�11a�

dn
TM = dn

TE =
ian


n��k0R2��n�k0f�R2�� − 
n�k0R2��n��k0f�R2��
.

�11b�

Since f�R2�=R2, the above equations can be simplified as

Tn
TM = Tn

TE = 0, dn
TM = dn

TE = an. �12�

The fact that coefficients Tn
TM and Tn

TE are exactly equal to
zero indicates a reflectionless behavior of a perfect cloak,
which agrees well with the conclusions of Ref. 13 However,
here, we use a more general method that is also applicable to
some nonideal cases. For example, when the boundary is not
perfectly matched �f�r� is discontinuous at R2�, there will be
on omnidirectional nonzero scattered field; the scattered
cross section can still be quantitatively calculated. Substitut-
ing Eqs. �10a�–�10c� into Eqs. �8a�–�8f�, after some algebraic
manipulations, the summation �n can be written in closed
forms. As a result, all components of the electric field are
expressed as �note that the parameters for free space can be
regarded as f�r�=r; therefore, the fields can still be written in
the following forms�

Er = f��r�sin � cos �eik0f�r�cos �, �13a�

E� =
f�r�

r
cos � cos �eik0f�r�cos �, �13b�

E� = −
f�r�

r
sin �eik0f�r�cos �. �13c�

Therefore, from Eqs. �12� and �13a�–�13c�, we confirmed
that as long as f�R2�=R2 and f�R1�=0, any spherical shell
with parameters defined by Eq. �9� can yield a perfect invis-
ibility. Different f�r� in the region R1
r
R2 will only cause
different field distributions in the cloak layer but will not
disturb the field outside.

The distribution of the field in the cloak shell R1
r

R2 and the sensitivity of the cloak to the perturbations at
the boundary are determined by the transformation function
f�r�. We investigate four types of cloak created with four
different transformation functions: �case I� f1�r�= �R2 / �R2
−R1���r−R1�, �case II� f2�r�= �R2 / �R2−R1�2��r−R1�2 with
f2��R1�=0, �case III� f3�r�=−�R2 / �R2−R1�2��r−R2�2+R2 with
f3��R2�=0, and �case IV� f4�r� with f4��R1�=0 and f4��R2�=0.
Figure 1�a� displays the curves of the four transformation
functions. Figure 1�b� shows the corresponding tangential
and radial components of � and � of the four different cloaks
calculated from Eq. �9�. Figures 1�c�–1�f� depict the calcu-
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lated Ex field distributions and Poynting vectors due to Ex
polarized wave incidence onto these four different cloaks,
respectively. All the cloaks have same sizes of R1=0.1 m and
R2=0.2 m. The wavelength in free space is 0.15 m. All the
quantities are normalized to unity in this and the following
calculations.

With different transformations, the fields inside the cloaks
are differently distributed, while the wave propagating in the
outer region of the cloak remains undisturbed. In Fig. 1�c�,
the field is nearly uniformly distributed in the cloak shell
with linear function f1�r�= �R2 / �R2−R1���r−R1� �transforma-
tion function used in Ref. 1� between R1 and R2. From the
result, we can find that this kind of cloak, which can be
called linear-transformed cloak, is sensitive to perturbations
both at the inner boundary R1 and outer boundary R2. In Fig.
1�d�, the field is mainly distributed near the outer boundary
in the cloak with the convex transformation function f2�r�.
This so-called convex-transformed cloak is not sensitive to
the perturbations at the inner boundary but much more sen-
sitive to perturbations at the outer boundary; In Fig. 1�e�, the
field is mainly distributed close to the inner boundary in the

cloak with a concave transformation function f3�r�. This so-
called concave-transformed cloak is not sensitive to the per-
turbations at the outer boundary, but it is sensitive to tiny
perturbations at the inner boundary. In a word, the field in-
side the cloak is larger in the position where the differential
of the function f�r� is larger. Thus, by choosing a function
such as f4�r�, the differential of which is zero at both R1 and
R2, we can get a cloak in which the field is mainly distributed
near the central region of the coating and approaches zero at
both boundaries. In fact, if we choose a transformation func-
tion f�r� that satisfies f��R1�=0 and f��R2�=1, the cloak will
be insensitive to perturbations at neither the outer boundary
nor the inner boundary; however, it will be sensitive to the
perturbations in the central region of the cloak.

IV. CONCENTRATORS

From the discussion of Sec. III, we can see that if f�r� is
differentiable at the boundary of R1 and R2, the scattered
field is equal to zero and the fields in the whole region will
still take the forms of Eqs. �13a�–�13c�. If f�r� is continuous
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FIG. 1. �Color online� �a�
Schematic figure of the transfor-
mation functions f�r� in four
cases: �case I� f1�r�= �R2 / �R2

−R1���r−R1�, �case II� f2�r�
= �R2 / �R2−R1�2��r−R1�2 with
f2��R1�=0, �case III� f3�r�=
−�R2 / �R2−R1�2��r−R2�2+R2 with
f3��R2�=0, and �case IV� f4�r� with
f4��R1�=0 and f4��R2�=0. �b� The
permittivity and permeability
components calculated from the
corresponding four cases. �c�, �d�,
�e�, and �f� show the Ex field dis-
tribution and Poynting vectors due
to Ex polarized wave incidence
onto a cloak created with the four
different transformation functions,
f1�r�, f2�r�, f3�r�, and f4�r�,
respectively.
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but is nondifferentiable at the boundary or nonmonotonic, by
applying boundary conditions at these interfaces, it can be
demonstrated that the tangential component of the electric
field is still continuous, which means that no scattering will
be introduced. It is further demonstrated that in source-free
cases, the fields are still convergent to Eqs. �13a�–�13c�.
Therefore, for any medium that satisfies �=c�0 and �=c�0
�which corresponds to f�r�=cr, where c is an arbitrary posi-
tive constant�, we can cover it with a certain coating to make
it invisible to the detector outside, but compared with the
cloak case where no energy can be transmitted inside, this
coating is different, in which energy can still penetrate into
the core. Figure 2�a� shows four different cases with four
different cores �c=0.5, 1.5, 2, and 2.5�, and their coated lay-
ers created with four different transformation functions,
f1�r�, f2�r�, f3�r�, and f4�r�, respectively. For simplicity, we
choose four linear functions determined by c, which can be
seen in Fig. 2�a�. R2 is set to be 0.2 m and R1 is equal to
0.1 m. Figure 2�b� shows the corresponding constitutive pa-
rameter components of different coatings. Using the afore-
mentioned formulations, we can calculate the field solutions

for these four cases. The Ex field distributions of these four
specific cases under an Ex polarized plane wave incidence
along the z direction are displayed in Figs. 2�c�–2�f�.

Since the vector potential takes the exact same form as
Eq. �10a�–�10c�, the field distributions shown in Figs.
2�c�–2�f� are determined by the relative parameter c.

When 0
c
1, the power transmitted through the core is
relatively small: most power is transmitted through the coat-
ing layer. An example of this case is shown in Fig. 2�c�,
where c=0.5. When c=0, the coating will reduce to a perfect
cloak.

When c�1, the coating can be treated as a concentrator.
When 1
c
R2 /R1 �here R2 /R1=2�, most power will trans-
mit through the coating, an example of this case is shown in
Fig. 2�d�, where c=1.5. We can see that our analytical result
is in good agreement with the simulation result in Ref. 3
which discusses a similar two dimensional case.

While at c=R2 /R1, as an extreme case with f��r�=0 in the
coating layer, all the power transmitted into �or out from� the
inner region is along the radii of the coating, as shown in
Fig. 2�e�. In this case, the radial components of � and � tend

nomalized radius, r/R1

0-0.1-0.2-0.3 0.1 0.2 0.3
x (m)

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

z
(m
)

1

0

-1

(c)

(e)

(d)

(f)

r

f(r)

R2R10

f (r)

f (r)

f (r)

1

22

3

f (r)4

c=0.5
c=1.5

c=2

c=2.5

(a)

1 1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

1

2

3

re
la
tiv
e
ε
,

,
µ

(b)

f (r)
f (r)
f (r)
f (r)

1

2

3

4

tangential
component

radial
component

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

0.3

0.2

0.1

0

-0.1

-0.2

-0.3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0.3

0.2

0.1

0

-0.1

-0.2

-0.3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

f (r)1 f (r)

f (r) f (r)

22

3 4

x (m)

z
(m
)

z
(m
)

z
(m
)

x (m) x (m)

FIG. 2. �Color online� �a�
Schematic figure of the four dif-
ferent configurations: four differ-
ent cores �a=0.5,1.5,2 ,2.5� and
their coated layers created with
four transformation functions,
f1�r�, f2�r�, f3�r�, and f4�r�, re-
spectively. �b� The permittivity
and permeability components of
the coating in the four cases. The
radial component of the constitu-
tive parameter in the coating layer
created with f3�r� is infinite, so it
is not plotted out here. �c�–�f� are
the calculated Ex field distribution
and Poynting vectors due to Ex

polarized wave incidence onto the
coated sphere.
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to infinity, while the tangential components equal zero. As
we know, when a wave is incident from vacuum to a me-
dium, at the boundary of which the tangential ���� is infinite
or the radial ���� is zero, it will be totally reflected due to
the surface current or surface voltage at the boundary.15 Our
case is different, in which kt=���r�t=k0f�r� /r has a finite
value, which means that the wave number is finite, so the
electromagnetic wave can still propagate into this media.
With Eqs. �13a�–�13c�, we can see that Er=0 and Hr=0,
showing that the Poynting power is always along the radii of
the sphere. Similarly, with Eqs. �9� and �13a�–�13c� we can
find that the nonzero components of D and B are always
along the radial direction, which means that the wave vector
of the electromagnetic wave is always perpendicular to its
Poynting power.

A more interesting case is that when c	R2 /R1, the per-
mittivity and permeability of the coating are negative. The
power that flows through the inner region �core� is larger
than the power that flows through the whole concentrator
because there is always some energy circulating between the
coating and the inner media, as shown in Fig. 2�f�. The pro-
portion of the power flow through the inner region Pin to the
power flow through the concentrator Pout is

Pin

Pout
=


�0
2�d��0

�/2n̂1 · �Ē � H̄�r2 sin �d�
r=R1


�0
2�d��0

�/2n̂2 · �Ē � H̄�r2 sin �d�
r=R2

= c2�R1

R2
�2

,

�14�

where n̂1 represents the surface normal of the inner boundary
R1 and n̂2 represents the surface normal of the outer bound-
ary R2. As shown in Fig. 2�f�, there is no scattering but the
power is enhanced inside �Pin	 Pout�. The reason of this in-
teresting phenomenon is that the case we consider here is in
the time harmonic state. Before reaching this steady time
harmonic state, there is a scattered field outside, and the en-
ergy is getting stored in the coating. When the steady state is
reached, the stored energy will circulate between the coating
and inner media. Larger c can lead to more energy stored in
the concentrator.

V. FIELD ROTATOR

Cylindrical rotation coating was proposed by Chen and
Chan.5 In this section, we will propose a three-dimensional
�spherical� rotation coating and calculate all the components
of the fields through our method. The analytical results show
similar behaviors with the simulation results in Ref. 5, as the
electromagnetic wave propagates in the x-y plane. Further-
more, we demonstrate that if the incident wave is not in the
x-y plane, not only the wave front of the wave but also the
polarization of the fields will be rotated.

Consider the following transformation: r�=r, ��=�, and
��=�+g�r�, where g�R2�=0 and g�R1�=�0. Using Eq. �1�,
the permittivity and permeability tensor components of the
coating shell can be given as

�� = � 1 0 − �

0 1 0

− � 0 1 + �2 ��0, �� = �0� 1 0 − �

0 1 0

− � 0 1 + �2 � ,

�15�

where �=r sin �g��r�. The above parameters are all ex-
pressed in spherical coordinates. With this relation, the field
is matched at both the outer boundary R2 and the inner
boundary R1, but the tangential angle � has been rotated by
an angle �0 from the outer boundary to the inner boundary of
the coating. So, the wave propagating in the x-y plane will
change its direction by �0 inside the enclosed domain with
respect to that outside the coating. Consider a plane wave
incident upon the coated sphere along the x direction with

unit amplitude of electric field Ēi= ŷeik0x. Since r=R2 and r
=R1 are both matched boundaries, with Eq. �7�, the vectors

ĀTM and ĀTE inside the coating can be expressed as

ĀTM = r̂
1

�
�
m,n

�n�k0r��am,n
TMTmn

e �� + g�r�� + bm,n
TMTmn

o �� + g�r��� ,

ĀTE = r̂
1

��0
�
m,n

�n�k0r��am,n
TE Tmn

e �� + g�r��

+ bm,n
TE Tmn

o �� + g�r��� , �16�

where Tmn
e �� ,��= Pn

m�cos ��cos�m��, Tmn
o �� ,��

= Pn
m�cos ��sin�m��, and am,n

TM, bm,n
TM and am,n

TE , bm,n
TE are the

spherical expansion coefficients of eik0 sin � cos � sin � sin �
and eik0 sin � cos � cos �, respectively. Substituting Eq. �16�
into Eqs. �8a�–�8f�, the field in the coating can be written in
the closed form,

Er = sin ��sin�� + g�r��

+ rg��r�cos�� + g�r���eik0 sin � cos��+g�r��, �17a�

E� = cos � sin�� + g�r��eik0 sin � cos��+g�r��, �17b�

E� = cos�� + g�r��eik0 sin � cos��+g�r��, �17c�

Hr =
cos �

�0
eik0 sin � cos��+g�r��, �17d�

H� = −
sin �

�0
eik0 sin � cos��+g�r��, �17e�

H� = 0. �17f�

If we choose the following transformation, g�r�=�0��ln r
−ln R2� / �ln R1−ln R2��, the above calculation can be
simplified.5 As a result, all the components of �� and �� are
independent of r. Figures 3�a� and 3�b� show the Hz distri-
bution for �0=� /2 and �0=�, respectively.

If the wave with unit electric field Ēi= x̂eik0z is incident
along the z axis �perpendicular to the x-y plane� onto the
rotator with �0=� /2, following the same steps, we can get
the distribution of Ex and Ey, as shown in Figs. 3�c� and 3�d�,
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respectively. It is interesting to see that in this case, instead
of the wave front of the electromagnetic wave, it is the po-
larization of the fields that is rotated as the wave is passed
into the coating. Therefore, this kind of spherical field rotator
can function as a wave vector rotator as well as a polariza-
tion rotator. Tuning the orientation of the spherical rotator
with respect to the incident wave direction can control the
functionality of the spherical rotators.

VI. CONCLUSION

In this paper, we summarized a generalized formulation
on how to use the transformations to obtain different devices
by combining the merits of both coordinate transformation
and the Mie scattering solutions. We show by mathematical
analysis that the coordinate transformation to the Maxwell
equations can be in a generalized form: any continuous func-
tions can be adopted in the transformation, and different type
of functions will bring different characteristics of the EM
behaviors in the transformed space. Starting from the formu-

lation deduced in this paper, invisibility cloaks, concentra-
tors, and rotators can be easily obtained by simply selecting
different scalar transformation functions, and the internal
field distributions in these devices can also be controlled by
tuning the shapes of the functions. Various examples for the
design of cloaks, concentrators, and field rotator are given to
demonstrate the validity of the formulation and the very high
computational efficiency. Our paper presents a very useful
tool in the analysis and design for the invisibility cloak, EM
concentrators, field rotators, and similar devices.
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